PySpark Certification Course in Chennai

PySpark Course certification training helps you add Spark power to your Python code with ease. This PySpark Course provides a detailed overview of the Spark stack and teaches you how to effectively use Python within the Spark ecosystem. By taking this PySpark Course, you will develop the skills needed to become a confident PySpark developer. Whether you are a beginner or an experienced programmer, this PySpark Course offers practical, hands-on training to master big data processing. Enroll in this PySpark Course to enhance your data engineering capabilities and advance your career.

pyspark course

What will you learn in

  • What is Apache Spark?
  • Why Pyspark?
  • Need for pyspark.
  • spark Python Vs Scala
  • pyspark features
  • Real-life usage of PySpark
  • PySpark Web/Application
  • PySpark - SparkSession
  • PySpark – SparkContext
  • PySpark – RDD
  • PySpark – Parallelize
  • PySpark – repartition () vs coalesce
  • PySpark – Broadcast Variables
  • PySpark – Accumulator

  • Operations on an RDD
  • Direct Acyclic Graph (DAG)
  • RDD Actions and Transformations
  • RDD computation
  • Steps in RDD computation
  • RDD persistence
  • Persistence features
  • Persistence Options:
  • - MEMORY_ONLY - MEMORY_SER_ONLY - DISK_ONLY - DISK_SER_ONLY - MEMORY_AND_DISK_ONLY

  • Fault Tolerence model in spark
  • Different ways of creating an RDD
  • Word Count Example
  • Creating spark objects (RDDs) from Scala Objects(lists).
  • Increasing the no of partitons
  • Aggregations Over Structured Data:
  • reduceByKey ()

  • i) Single Grouping and Single Aggregation
  • ii) Single Grouping and multiple Aggregation
  • iii) multi-Grouping and Single Aggregation
  • iv) Multi Grouping and Multi Aggregation
  • Differences b/w reduceByKey () and groupByKey ()
  • Process of groupByKey
  • Process of reduceByKey
  • Reduce () function.
  • Various Transformations
  • Various Built-in Functions

  • countByKey()
  • countByValue()
  • sortByKey()
  • zip()
  • Union()
  • Distinct()
  • Various count aggregation
  • Joins (inner join, outer join)
  • Cartesian ()
  • Cogroup ()
  • Other actions and transformations

  • Introduction
  • Making data Structured
  • Case Classes
  • ways to extract case class objects.
  • - using function - using map with multiple expressions - using map with single expression
  • SQL Context
  • Data Frames API
  • Dataset API
  • RDD vs DataFrame vs DataSet
  • PySpark – Create a DataFrame
  • PySpark – Create an empty DataFrame.
  • PySpark – Convert RDD to DataFrame
  • PySpark – Convert DataFrame to Pandas
  • PySpark – show()
  • PySpark – StructType & StructField
  • PySpark – Row Class
  • PySpark – Column Class
  • PySpark – select()
  • PySpark – collect()
  • PySpark – withColumn()
  • PySpark – withColumnRenamed()
  • PySpark – where() & filter()
  • PySpark – drop() & dropDuplicates()
  • PySpark – orderBy() and sort()
  • PySpark – groupBy()
  • PySpark – join()
  • PySpark – union() & unionAll()
  • PySpark – unionByName()
  • PySpark – UDF (User Defined Function)
  • PySpark – map()
  • PySpark – flatMap()
  • Pyspark – foreach()
  • PySpark – sample() vs sampleBy()
  • PySpark – fillna() & fill()
  • PySpark – pivot() (Row to Column)
  • PySpark – partitionBy()
  • PySpark – ArrayType Column (Array)
  • PySpark – MapType (Map/Dict)

  • PySpark – Aggregate Functions
  • PySpark – Window Functions
  • PySpark – Date and Timestamp Functions
  • PySpark – JSON Functions
  • PySpark – Read & Write JSON file

  • PySpark – when()
  • PySpark – expr()
  • PySpark – lit()
  • PySpark – split()
  • PySpark – concat_ws()
  • Pyspark – substring()
  • PySpark – translate()
  • PySpark – regexp_replace()
  • PySpark – overlay()
  • PySpark – to_timestamp()
  • PySpark – to_date()
  • PySpark – date_format()
  • PySpark – datediff()
  • PySpark – months_between()
  • PySpark – explode()
  • PySpark – array_contains()
  • PySpark – array()
  • PySpark – collect_list()
  • PySpark – collect_set()
  • PySpark – create_map()
  • PySpark – map_keys()
  • PySpark – map_values()
  • PySpark – struct()
  • PySpark – countDistinct()
  • PySpark – sum(), avg()
  • PySpark – row_number()
  • PySpark – rank()
  • PySpark – dense_rank()
  • PySpark – percent_rank()
  • PySpark – typedLit()
  • PySpark – from_json()
  • PySpark – to_json()
  • PySpark – json_tuple()
  • PySpark – get_json_object()
  • PySpark – schema_of_json()
  • Working Examples

  • Working with sql statements
  • Spark and Hive Integration
  • Spark and mysql Integration
  • Working with CSV
  • Working with JSON
  • Transformations and actions on dataframes
  • Narrow, wide transformations
  • Addition of new columns, dropping of columns ,renaming columns
  • Addition of new rows, dropping rows
  • Handling nulls
  • Joins
  • Window function
  • Writing data back to External sources
  • Creation of tables from Data frames (Internal tables, Temporary tables)

  • Local Mode
  • Cluster Modes (Standalone , YARN)

  • Stages and Tasks
  • Driver and Executor
  • Building spark applications/pipelines
  • Deploying spark apps to cluster and tuning
  • Performance tuning

Frequently Asked Questions

    We have both online & offline training.

    Yes, you will get course completion certificate when course is completed.

    Basic Understanding on Python.

    Netbanking and UPI.

    We have industrial experts with professional experience.

    Big Data architects, Data scientists and much more.

    Yes, you can get free demo before enrolling to this course.

Quick Enquiry

Please wait we are capturing your information.

Your Response was submitted. our team will contact you shortly.

Industry experts Mentored

Learning a technology with a professional who is well expertise in that to solve 80% of your needs

Hands on Project Based Experiences

We emphasize practical, hands-on training in all our programs, ensuring a more effective and engaging learning experience.

Flexible Timing

We started with over 2 trainers and have now grown to more than 100+, with our team continuing to expand. This allows us to offer flexible scheduling options for our learners.

Live interactive online learning

Our platform enables seamless interaction between instructors and learners, creating an immersive and effective online training environment.

Certification

Earn industry-recognized credentials with our rigorous certification courses, empowering your career advancement and professional growth.

Interview Preparation

Master the art of interviewing through personalized coaching, mock interviews, and strategic guidance, ensuring you stand out and secure your dream opportunity.

WHY CHOOSE US?

Take on any Challenge of the Digital World

PySpark Certification Course in other cities